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Problem Statement

Challenge

The lack of insights into customer
behavior affects Santander’s ability to
provide proactive customer service and
target marketing impacting acquisition
costs and customer lifetime value.

Solution

Build a predictive model that identifies
which customers will make a transaction
in the future regardless of the amount of
money transacted - and generate insights
into the features most important in
identifying customer transactions.



Data Description

200 anonymized numeric features

ID column

Binary ‘target’ response column
o 0= No Purchase; 1 = Purchase

Train Data - 200,000x202
Test Data - 200,000x201

o No ‘target’ variable with actuals



Data Preview

Train Set

ID_code target var_0 var_1 var_2 var_3 var_4

train_0 0 8.9255 -6.7863 11.9081 5.093 11.4607
train_1 0 11.5006 -4.1473 13.8588 5.389 12.3622
train_2 0 8.6093 -2.7457 12.0805 7.8928 10.5825
train_3 0 11.0604 -2.1518 8.9522 7.1957 12.5846
Test Set

ID_code var_0 var_1 var_2 var_3 var_4

test_0 11.0656 7.7798 12.9536 9.4292 11.4327
test_1 8.5304 1.2543 11.3047 5.1858 9.1974
test 2 5.4827 -10.3581 10.1407 7.0479 10.2628
test 3 8.5374 -1.3222 12.022 6.5749 8.8458

var_198 var_199

12.7803 -1.0914

18.356 1.9518
14.7222 0.3965
17.9697 -8.9996

var_198 var_199

15.4722 -8.7197
19.1293 -20.976
19.8956 -23.1794
13.0168 -4.2108




Notebook Critique - What Makes them Stand Out?

e C(lear layout walking through each step to arrive at final model
e Explanations of each step that allow for reproducibility

e Select Visuals that aid in data exploration
e Eliminated Synthetic Samples to Improve Score



Key Issues with Dataset

e [eature Selection

o Data set containing large number of features

o Deciding how to use each feature - lasso, ridge
e Imbalanced Target Column in Train Set

o More O instances than 1's
o Creating a model that handles the imbalance to combat bias towards one response



Exploratory Data Analysis

Target Class Proportions

Variable Importance from RF Model
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Exploratory Data Analysis

e All features are normally distributed.
o Lead us to believe that the variables are the
result of a PCA transformation
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Correlation Heat Map

No correlation between
variables - independent
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Training and Validation Process

e 80/20 split of the train data set

o 160,000 training rows and 40,000 validation rows
o Consistent samples in all models

e Tried sampling to deal with class imbalance
o SMOTE and Under-sampling

e Fit and evaluated multiple models
o Random Forest, Logistic Regression, SVM, Boosting, Lasso/Ridge and Naive Bayes



Balancing the Data

e Why is it important? SMOTE’s Informed Oversampling

o  Predictions Procedure I, k=3
o  Evaluation Metrics

O
e Methods Q

o Down Sampling ./'/ \.\ O
o SMOTE @
. : Minority sample
- : Synthetic sample

‘ : Majority sample




Kxperimentation Results

No Sampling Under-Sampling

Accuracy Accuracy

Logistic Regression | 0.629 0.915
Random Forest 0.5 0.9
Lasso 0.606 0.914
Ridge 0.626 0.915
Naive Bayes 0.8916 0.92215

SMOTE
ROC Accuracy
AUC
Logistic Regression | 0.784 0.783
Random Forest 0.599 0.633
Lasso 0.736 0.590
Ridge 0.738 0.596
Naive Bayes 0.524 0.0899

Logistic Regression | 0.8633 0.780
Random Forest 0.870 0.776
GBM 0.872 0.782
Ridge 0.811 0.900
Naive Bayes 0.891 0.809




Final Model: naive Bayes Classifier

Class Prior Probability
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(
P(c) is the prior probability of class.

P(x|c) is the likelihood which is the probability of predictor given class.
P(x) is the prior probability of predictor.

P(c|x) is the posterior probability of class (target) given predictor (attribute).

Model Assumptions

Predictors are independent
All predictors have an equal effect on
the outcome



Model Results

e Accuracy - 0.92215
e ROCAUC-0.8916

e Average 10-Fold CV ROC AUC Score - 0.889
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Reproducibility

Datasets

e https://www.kagqgle.com/c/santander-customer-transaction-prediction/data

e Minor preprocessing steps to prepare the data


https://www.kaggle.com/c/santander-customer-transaction-prediction/data

Reproducibility

Model: Naive Bayes Classifier

e Probabilistic Machine Learning model
e Based on Bayes Theorem
e Simple, effective and commonly used

e Does not require as much training ,non-sensitive to irrelevant features



Reproducibility
C 0 de « FinalModel-Santander.R

e Preprocessing Data
o performed using the train.csv provided since the test.csv lack the “target” column

e Fit the model

o naiveBayes() function is used to fit the model
o Make class predictions using the naive bayes fit model using the test set

e [Evaluating the model performance

o  Construct a confusion Matrix
o  Calculate overall accuracy rate, ROC Area Under Curve, PRAUC

o  10-fold cross validation



